Motherboard: Gigabyte GA-BX2000

Published by

on

It has been quite a while since my last post, I can only apologise, time just skipped by so fast! Last month I did have a chance to go and visit my parents, it was quite lucky timing in a way, as there was less risk and concern surrounding the COVID situation at the time. I usually try to take some photos of old computer hardware whilst I’m there, and this visit was no exception. Today we’re taking a quick look at a slot 1 motherboard, the GA-BX2000 motherboard made by Gigabyte in 1999. Here’s a photo of the board.

The board supports Pentium III CPUs up to 550 Mhz, with my board having a 500Mhz P3 Katmai installed running with a 100Mhz FSB. Being an earlier P3 it may be a good candidate for some simple overclocking, which can be achieved by adjusting the dip switches on the board. Unfortunately the board doesn’t allow adjusting the CPU core voltage at all, limiting your overclocking options to using the stock voltage.

It has an Intel 440 BX chipset, which seems to have been fairly reasonable for the time. It supports a range of bus speeds from 66Mhz up to 133Mhz, which gives significant opportunity to overclock the bus depending on the CPU installed. I read that this may not improve speed very much with the Slot 1 CPUs due to how the L2 cache is structured, bumping up the CPU multiplier was found to have a bigger effect on performance, with a maximum of 6.5x there may not be much headroom for an increase. The board features an AGP 3.3v slot which I suspect is only 1x but could be 2x.

The onboard devices include the usual USB, Floppy, ATA and serial and parallel interfaces, but no integrated sound.The lack of onboard sound wasn’t a huge deal as decent sound cards were still quite easy to come by. Although by this point onboard sound was becoming much more common, it hadn’t yet become good enough to entirely replace the need for dedicated cards.

An interesting feature this board has is the Dual BIOS. Basically the board physically has two separate ROM chips each containing a copy of the system ROM. If the primary ROM is found to be not working properly it automatically switches to the secondary one. It is also supposed to provide end users with some protections from hardware failure, not that the flash ROM chips really failed all that often. One problem it could effectively combat is a failed firmware update, whether it be one that was interrupted, or simply an incorrect image. This would hopefully prevent your board from being bricked. Never having had a reason to need it, I don’t really know how effective a solution it was. This board features a jumper to disable the dual BIOS feature.

In many ways this wouldn’t have been a good buy when it was first made. Whilst it supports the early P3 CPUs, it does so only up to the 650Mhz mark which was quickly surpassed and later chips moved to a different socket. On the other hand it does have some limited capacity to overclock, so it would have been useful for boosting performance of Pentium II chips and the earliest Katmai Pentium III. There’s nothing obvious that would cause reliability issues in the long term, so as long as you were happy with the supported CPUs it would have been fine for general use.

For an enthusiast today it’s probably most useful for a Pentium II build, as there are better boards for building an Pentium 3 based system and the overclocking options are more meaningful for the slower chip. The silk screen on the board has all the switch configuration details handy for setting the bus speed and multiplier, the rest is a mostly jumper-less design, although I did see a jumper for a Voodoo card versus non-Voodoo cards, which is quite odd to say the least. The silk screen doesn’t label everything clearly, so looking up the manual may be required when installing or performing maintenance.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.